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Abstract
In this work we analyze the quantum controllability of rotational motion under
the influence of an external laser field coupled through a permanent dipole
moment. The analysis takes into consideration up to three polarization fields,
but we also discuss the consequences for working with fewer polarized fields.

PACS number: 32.80.Qk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The manipulation of quantum phenomena is receiving increasing attention with laboratory
demonstrations, including for control of rotational motion [1–6]. A fundamental issue
underlying such experiments is a basic assessment of the possibility of attaining full
control in any particular physical circumstance. An assessment of this type concerns
the controllability of quantum systems, and studies exist [7–11] based on the spectrum
of the system field free Hamiltonian along with the coupling interaction to the control
field. However, the treatment when the spectrum has degeneracies remains incomplete with
the existing approaches either attempting to lift the degeneracy [8] or considering special
coupling operators [10]. In particular, neither treatment permits the fundamental analysis of
controllability of pure molecular rotational motion. This work addresses this situation in the
context of dipole coupling and obtains positive controllability results. In addition, the analysis
takes into consideration multi-polarization fields. This paper is relevant to other (non)-sudden
alignment/orientation works [12–15] and can also be seen as a step toward extending the
treatment to a general assessment of controllability of vibration–rotation states. An additional
related topic is rotational control through non-resonant polarization interactions [16], which
will be treated in a separate work.
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2. Physical picture

Consider a linear rigid molecule described by the Hamiltonian H = BĴ 2, where B is the
rotational constant and Ĵ the is the angular momentum operator. The molecule’s rotational
motion is subject to control through external interactions with an electric field

−→
ε(t), which

couples to the molecule through the dipole operator
−→
d . The time-dependent Schrödinger

equation is

ih̄
∂

∂t
|ψ(θ, φ, t)〉 = (BĴ 2 − −→

ε(t) · −→
d ) |ψ(θ, φ, t)〉 , (1)

|ψ(0)〉 = |ψ0〉 , (2)

where θ and φ are the standard polar coordinates. We consider that the external field
−→
ε(t) is

multi-polarized, i.e. any of its x, y, and z components can be tuned independently as a function
of time. See section 4 for discussion of other situations.

For convenience we express the problem in spherical harmonics
∣∣Ym

J

〉
, J � 0 and

−J � m � J as the eigenbasis of the operator H = BĴ 2 such that BĴ 2
∣∣Ym

J

〉 = EJ

∣∣Ym
J

〉
,

EJ = BJ(J +1). The difference between two consecutive eigenvalues EJ+1−EJ = 2B(J +1)

increases with J. Thus, beyond some threshold value of J depending on the control-field
characteristics, this gap will lie outside of the available frequency range of the field in any
practical situation. As such, we will truncate the set of spherical harmonics

∣∣YM
J

〉
at a suitable

value Jmax and consider control over the domain of states J � Jmax.

Remark 1. The truncation is supported here by the convenient spectral properties of the
operator BĴ 2 having only discrete eigenvalues which become increasingly sparse as the
energy increases. In particular, no accumulation of the discrete spectrum toward a continuous
spectral region is present. However, the impact of truncation in other contexts is not always
transparent for assessing controllability. For instance, any finite-dimensional truncation of
the linearly driven harmonic oscillator [10, 17] is controllable, but the infinite-dimensional
system is not. In that situation the gaps between consecutive eigenvalues are all equal, and a
sufficiently long external control pulse can lead to excitation of states indefinitely high in the
spectrum.

Remark 2. A circumstance may occur when the wavefunction is stimulated to populate
eigenfunctions of increasing energy and even go to dissociation [6]; the field frequency
increases indefinitely in order to address this increasing energy gap between two consecutive
eigenvalues. This situation is beyond the treatment here that only considers bound states
remaining within a given energy range.

The dipole interaction
−→
ε(t) · −→

d may be expressed as εx(t)x + εy(t)y + εz(t)z in
terms of space-fixed cartesian coordinates −→x , −→y and −→z , where each of the components
εx(t), εy(t), εz(t) of the field can be tuned independently.

The J = 1 spherical harmonics

Y±1
1 = ∓1

2

√
3

2π

x ± iy

r
, Y 0

1 = 1

2

√
3

π

z

r
, (3)

may be written in the rotated frame
−→x +i−→y√

2
,

−→x −i−→y√
2

and −→z . Choosing this latter frame

we obtain
−→
ε(t) · −→

d = ε0(t)d10Y
0
1 + ε+1(t)d11Y

1
1 + ε−1(t)d1−1Y

−1
1 . For convenience the

components d10, d11, d1−1 of
−→
d are assumed to be all non-zero and will be rescaled to 1

2
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(this is equivalent to rescaling the components ε0, ε+1 and ε−1 of
−→
ε(t)) so that we obtain−→

ε(t) · −→
d = ε0(t)Y

0
1 + ε+1(t)Y

1
1 + ε−1(t)Y

−1
1 .

Let Dk be the matrix of the spherical harmonic operator Y k
1 (k = −1, 0, 1). The associated

matrix elements may be written as [18]

(Dk)(Jm),(J ′m′) = 〈
Ym

J

∣∣Y k
1

∣∣Ym′
J ′

〉 =
∫ (

Ym
J

)∗
(θ, φ)Y k

1 (θ, φ)Ym′
J ′ (θ, φ) sin(θ) dθ dφ

=
√

3(2J + 1)(2J ′ + 1)

4π

(
J 1 J ′

0 0 0

) (
J 1 J ′

m k m′

)
, (4)

where the real constants
(
J 1 J ′

0 0 0

)
and

(
J 1 J ′

m k m′
)

are Wigner 3J-symbols (see [19] chapter 2

for formulas and details). The non-zero elements satisfy the criteria m + k + m′ = 0 and
|J − J ′| = 1. Thus, the only non-zero entries of the matrix D−1 are between states

∣∣Ym
J

〉
and∣∣Y−m+1

J+1

〉
; we will say that D−1 couples states

∣∣Ym
J

〉
and

∣∣Y−m+1
J+1

〉
; similarly, D0 only couples∣∣Ym

J

〉
and

∣∣Y−m
J+1

〉
and D1 only couples

∣∣Ym
J

〉
and

∣∣Y−m−1
J+1

〉
.

Denoted by �(t) the coefficients of ψ(θ, φ, t) with respect to the spherical harmonic
basis, the Schrödinger equation in matrix form is{

i ∂
∂t

�(t) = (E − ε0(t)D0 − ε−1(t)D−1 − ε1(t)D1)�(t)

�(t = 0) = �0,
(5)

where E is the diagonal matrix with entries EJ for all dual indexes Jm with −J � m � J and
J � Jmax.

3. Controllability assessment with three independently polarized field components

We desire to determine whether the system is controllable over all of its J and m states up
to Jmax provided that all of the control-field components εk(t) k = −1, 0, 1 can be chosen
independently. Intuitive arguments were given in [15] (pages 437–438) on why the answer to
this question should be positive for all truncation values Jmax. The material below provides a
rigorous grounding for this claim.

Theorem 1. Let Jmax � 1 and denote N = (Jmax + 1)2. Let E, Dk, k = −1, 0, 1 be N × N

matrices indexed by Jm with J = 0, . . . , Jmax, |m| � J , where

EJm;J ′m′ = δJJ ′δmm′EJ (6)

(D0)Jm,J ′m′ �= 0 ⇔ |J − J ′| = 1, m + m′ = 0 (7)

(D1)Jm,J ′m′ �= 0 ⇔ |J − J ′| = 1, m + m′ + 1 = 0 (8)

(D−1)Jm,J ′m′ �= 0 ⇔ |J − J ′| = 1, m + m′ − 1 = 0 (9)

and recall that

EJ = J (J + 1). (10)

Then the system described by E,D−1,D0,D1 is controllable.

Proof. In view of the criterion in [7] we have to prove that the Lie algebra L generated by iE

and iDk , k = −1, 0, 1, is u(N).
We label by e(ab) the N × N matrix whose entry at row a and column b is 1 and all others

are zero and denote V(ab) = i(e(ab) +e(ba)), S(ab) = (e(ab) −e(ba)) and 
a = i(e(aa) −e(a+1;a+1)).

3
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J=2

J=1

J=0
0

0

0

1

1−2 −1

−1

2

Figure 1. The three matrices Dk, k = −1, 0, 1, coupling the eigenstates are each represented by a
different line style (dotted, solid, dashed) for Jmax = 2. On the Jth line from bottom, the states are
from left to right in order |Ym=−J

J 〉 , . . . , |Ym=J
J 〉 for even values of J and |Ym=J

J 〉 , . . . , |Ym=−J
J 〉

for odd values of J. The m quantum number labeling are indicated in the figure. The coupling
pattern above continues in a similar fashion for Jmax > 2.

Note that S(ab), V(ab), (a < b, a, b = 1, N) and 
a (a = 1, . . . , N −1) form a basis for su(N).
We index by ξ ∈ � (of cardinality K) the entries ξ = (ab) , a < b such that at least one matrix
Dk has a non-zero entry (Dk)ξ=(ab) �= 0 and denote by ξ † the pair (ba).

We will index the matrices E and Dk with a, b running from 1 to N: E = (E)Na,b=1,
Dk = (Dk)

N
a,b=1, k = −1, 0, 1, where we choose the order for (Jm): (00) corresponds

to a = 1, (11) corresponds to a = 2, (10) to a = 3, (1 − 1) to a = 4, then
(2 − 2), (2 − 1), (20), (21), (22), . . . , etc (see figure 1). Note that (Jm) traverses from
m = −J to m = J for even values of J and from m = J down to m = −J for odd values of J.
For instance E44 = E(1−1),(1−1) = 2. When there is no ambiguity we will use interchangeably
(1 −1) or 4, etc.

For k = −1, 0, 1 and  � 1 we compute ad
iE iDk = [iE, . . . , [iE, iDk] . . .] =(

i+1ω
ab(Dk)ab

)N

a,b=1 (ωab = Eaa − Ebb) with the iterative commutators taken  times.
Consider the basis⎧⎨

⎩vJ
k =

⎛
⎝ ∑

ξ=(ab),ωξ =EJ+1−EJ ;a<b;(Dk)ξ �=0

(Dk)ξ eξ

⎞
⎠ ,

v
J †
k =

⎛
⎝ ∑

ξ=(ab),ωξ =EJ+1−EJ ;a<b;(Dk)ξ �=0

(Dk)
∗
ξ †eξ †

⎞
⎠ ; J = 0, . . . , Jmax

⎫⎬
⎭ (11)

and note that ad
iE iDk = ∑

k,J i+1ω
ξv

J
k + i+1(−1)(ωξ )

v
J †
k . We obtain as in [20] that, since

ωξ are all different, ad
iE iDk generates any vector in the linear space

Vect

⎧⎨
⎩

⎛
⎝ ∑

ξ=(ab),ωξ =EJ+1−EJ ;a<b;(Dk)ξ �=0

(Dk)ξSξ

⎞
⎠ ,

⎛
⎝ ∑

ξ=(ab),ωξ =EJ+1−EJ ;a<b;(Dk)ξ �=0

(Dk)
∗
ξ †Vξ †

⎞
⎠ ; J = 0, . . . , Jmax

⎫⎬
⎭ . (12)

In particular,⎛
⎝ ∑

ξ=(ab),ωξ =EJ+1−EJ ;a<b;(Dk)ξ �=0

(Dk)ξSξ

⎞
⎠ and

⎛
⎝ ∑

ξ=(ab),ωξ =EJ+1−EJ ;a<b;(Dk)ξ �=0

(Dk)
∗
ξ †Vξ †

⎞
⎠

will belong to L, J = 0, . . . , Jmax.

4
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For J = 0, we obtain S(a=(00),b=(10)), S(a=(00),b=(1−1)), S(a=(00),b=(11)) ∈ L and the same
for V(a=(00),b=(1m)), m = −1, 0, 1. We recall now the relations

for a �= b �= c �= a : [S(ab), S(bc)] = S(ac), [S(ab), V(bc)] = V(ac),

for a, b, a′, b′ all different: [S(ab), S(a′b′)] = 0, [S(ab), V(a′b′)] = 0, (13)

for a = 1, . . . , N − 1 : [S(a,a+1), V(a,a+1)] = 
a,

and note that the commutators⎡
⎣S(a=(00),b),

⎛
⎝ ∑

ξ=(b′c′),ωξ =E2−E1;b′<c′;(Dk)ξ �=0

(Dk)ξSξ

⎞
⎠

⎤
⎦

contain only one term (Dk)(bc)S(ac), where c = (2c2) is the (level J = 2) state coupled with
state b = (1b2) (level J = 1) through the same matrix Dk that also couples the state a (level
J = 0) and b: (Dk)(ab) �= 0 �= (Dk)(bc). Thus S(ac) ∈ L and, by using the commutator of S(ab)

and S(ac), we obtain that S(bc) is in L as well for any ξ = (b = (1m), c = (2m′)) such that
(Dk)ξ �= 0 for some k = −1, 0, 1. It remains now to iterate the above treatment for all levels
J = 2, . . . , Jmax to obtain that all Sξ and Vξ coupled by some matrix k: (Dk)ξ �= 0 are in L.
We note that the graph [8, 9, 11] of the system is connected and conclude that L = u(N). �

Remark 3. The same conclusion as that of theorem 1 holds if one replaces (10) by the more
general condition

EJ+1 − EJ �= EJ ′+1 − EJ ′ , ∀J �= J ′. (14)

Theorem 2. Consider a finite-dimensional system where a set of states, indexed as a = (Jm)

with J = 0, . . . , Jmax, m = 1, . . . , mmax
J , mmax

0 = 1 are such that

EJm;J ′m′ = δJJ ′δmm′EJ (15)

EJ+1 − EJ �= EJ ′+1 − EJ ′ , ∀J �= J ′. (16)

We also introduce the set of K external interactions with corresponding matrices Dk,
k = 1, . . . , K, where Dk only couples states (Jm) and (J ′m′) such that |J − J ′| = 1
and only one non-zero coupling exists for any (Jm):

(Dk)(Jm),(J ′m′) �= 0 ⇒ |J − J ′| = 1 (17)

(Dk)(Jm),(J ′m′) �= 0, (Dk)(Jm),(J ′′m′′) �= 0, J � J ′ � J ′′ ⇒ J ′ = J ′′, m′ = m′′.
(18)

We also suppose that the graph [8, 9, 11] of the system is connected. Then the system described
by EJ ,Dk (J = 0, . . . , Jmax, k = 1, . . . , K) is controllable.

Proof. Under the assumptions above, the proof follows exactly the same path as that of the
theorem 1. �

Remark 4. The transition energy condition in equations (14) and (16) is consistent with
the rotation of a linear rigid molecule. In addition the further flexibility encompasses broader
circumstances including the possibility of hindered rotation of a molecule residing in a trapped
nanoscale environment. Moreover, when hypothesis (15) is not satisfied because the system
is not degenerate previous results apply [8–11].

5
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Remark 5. The results above can be extended to the case of a symmetric top molecule; in
such a circumstance [18] the energy levels are described by three quantum numbers EJKm with
|m| � J , |K| � J and

EJKm = C1J (J + 1) + C2K
2, (19)

for some constants C1 and C2. If the initial state is in the ground state, or any other state with
K = 0 the coupling operators have the same structure as in theorem 1 and thus any linear
combination of eigenstates with quantum numbers J,K = 0,m can be reached (same result
directly applies). A more detailed analysis of symmetric top molecules will be presented in a
future work.

4. Controllability for a locked combination of lasers

We consider here whether the positive result above is still true when εk(t), k = −1, 0, 1 are
not chosen independently but with a locked linear dependence through coefficients αk such
that

−→
ε(t) · −→

d = ε(t)
{
α−1Y

−1
1 + α0Y

0
1 + α1Y

1
1

}
. Note that there may exist cases that are not

controllable for any given linear combination. One such example is

E =

⎛
⎜⎜⎝

0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ ,

−→
e(t) · −→

d = ε(t)μ, μ =

⎛
⎜⎜⎝

0 α−1 α0 α1

α−1 0 0 0
α0 0 0 0
α1 0 0 0

⎞
⎟⎟⎠ . (20)

This system is such that for all αk (k = −1, 0, 1 ) the Lie algebra generated by iE and iμ is
u(2), thus the system is not controllable with one laser field. However, theorem 1 shows that
it will become controllable provided that the three components εk(t), k = −1, 0, 1, can be
chosen independently.

The following result describes this situation further.

Theorem 3. Let A,B1, . . . ,BK be elements of a finite-dimensional Lie algebra L. For α =
(α1, . . . , αK) ∈ R

K we denote Lα as the Lie algebra generated by A and Bα = ∑K
k=1 αkBk .

Define the maximal dimension of Lα

d1
A,B1,...,BK

= max
α∈R

K
dimR(Lα). (21)

Then with probability one with respect to α, dim(Lα) = d1
A,B1,...,BK

.

Remark 6. This theorem states that for fixed A, B1, . . . , BK all choices of α give a Lie
algebra Lα of maximal dimension with the possible exception of at most a null measure set.
This dimension d1

A,B1,...,BK
is specific to the choice of coupling operators Bk but can be easily

computed by the property above. On the other hand, recall that [21] when A,B1, . . . , BK

are r × r skew-Hermitian matrices the system is generically controllable, i.e. we have
d1

A,B1,...,BK
= r2 for generic A,B1, . . . , BK .

Proof. Consider the (countable) collection Cα = {
ζ α

1 = A, ζα
2 = B, ζα

3 = [A,Bα], ζ α
4 =

[Bα,A], ζ α
5 = [A, [A,Bα]], . . .

}
listing all possible iterative commutators constructed from

A and Bα . Now take a subset
{
ζ α
i1
, . . . , ζ α

ir

}
of Cα; the vectors ζ α

i1
, . . . , ζ α

ir
are linearly

independent when the Gram determinant is non-null. Note that the Gram determinant is an
analytic function of α; hence one of the following alternatives is true: either this function is
identically null for all α (which is the case, e.g., for

{
ζ α

3 , ζ α
4

}
) or it is non-null everywhere

with the possible exception of a zero measure set. Since the number of subsets
{
ζ α
i1
, . . . , ζ α

ir

}
6
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of Cα is countable, we can construct F ⊂ R
K whose complement R

K \ F is of zero measure
such that if ζ α

i1
, . . . , ζ α

ir
are linearly independent for one value of α ∈ R

K then they are linearly
independent for all α′ ∈ F . Denote by α� some value such that dimR(Lα�) = d1

A,B1,...,BK
;

then there exists a set such that
{
ζ α�

i1
, . . . , ζ α�

i
d1
A,B1 ,...,BK

}
are linearly independent implying that{

ζ α�

i1
, . . . , ζ α�

i
d1
M

}
are linearly independent for any α ∈ F . Thus dimR(Lα) � d1

A,B1,...,BK
for all

α ∈ F and the conclusion follows by the maximality of d1
A,B1,...,BK

.
We invoked remark 6 and performed numerical tests by computing the Lie algebra

generated by iE and iDα = i
∑1

k=−1 αkDk . The theorem was verified and we obtained
for any fixed Jmax and randomly chosen values of α that the dimensions of the Lie algebra are
the same. We also observed that the Lie algebra generated by iE and i

∑1
k=−1 αkDk always

had dimension (N − 2)2 which leads to the conjecture that generically in α (see theorem 3)
the Lie algebra generated by iE and i

∑1
k=−1 αkDk is isomorphic to u(N − 2). Recall that by

theorem 1 when three independent control intensities are allowed then this Lie algebra is u(N).
We have as yet no theoretical explanation of why this appears to be true. This observation
shows, nevertheless, the extent to which a locked set of laser intensities is sufficient to obtain
specific attainable control targets. �

5. Controllability with two lasers

We consider in this section the situation when two laser fields are used, i.e. one can
independently shape the intensity along two vectors −→α and

−→
β :

−→
ε(t) · −→

d = εα(t)
{
α−1Y

−1
1 +

α0Y
0
1 + α1Y

1
1

}
+ εβ(t)

{
β−1Y

−1
1 + β0Y

0
1 + β1Y

1
1

}
. Examples of such situations are shaping along−→x and −→z directions, −→x and −→y directions or any other two independent vectors.

Theorem 4. Let A,B1, . . . ,BK be elements of a finite-dimensional Lie algebra L. We denote
for α = (α1, . . . , αK) ∈ R

K and β = (β1, . . . , βK) ∈ R
K by Lα,β the Lie algebra generated

by A, Bα = ∑K
k=1 αkBk and Bβ = ∑K

k=1 βkBk .
Define the maximal dimension of Lα

d2
A,B1,...,BK

= max
α∈R

K
dimR(Lα,β). (22)

Then with probability one with respect to α, β, dim(Lα,β) = d2
A,B1,...,BK

.

Proof. The proof is similar to that of theorem 3. �

This theorem states that all choices of α, β give the maximal Lie algebra dimension
dim(Lα,β) = d2

A,B1,...,BK
with the possible exception of at most a null measure set. We will

analyze in the following two particular cases.

5.1. Field shaped in the −→z and
−→x +i−→y√

2
directions

When the field is shaped in the −→z and
−→x +i−→y√

2
directions we obtain, with the notation of

previous sections, that ε0(t) and ε1(t) are arbitrary and ε−1 is null. This is not a generic case
in the sense of theorem 4 because the shaping directions are precisely related to the system
structure. We note that since ε−1 = 0 the coupling realized by the operator D−1 (dotted line
in figure 1) disappears and the state

∣∣Ym=Jmax
Jmax

〉
will not be reachable (see figure 2). This means

that the population in state
∣∣Ym=Jmax

Jmax

〉
cannot be changed by the two lasers and thus will be a

conserved quantity.

7
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J=2

J=1

J=0
0

0

0

1

1−2 −1

−1

2

Figure 2. The same conventions as in figure 1 are used except that we do not draw on the coupling
by D−1. We note that the state |Ym=Jmax

Jmax
〉 is not connected with the others.

J=2

J=1

J=0
0

0

0

1

1−2 −1

−1

2

Figure 3. The same conventions as in figure 1 are used except that we do not draw on the
coupling by D0. We note that two connectivity sets appear: those connected with |Y 0

0 〉 (filled black
rectangles) and those connected with |Y 0

1 〉 (empty rectangles).

Theorem 5. Consider the model of theorem 1 with ε−1 = 0. Let |ψI 〉 and |ψF 〉 be two states
that have the same population in

∣∣Ym=Jmax
Jmax

〉
, i.e.

∣∣〈ψI , Y
m=Jmax
Jmax

〉∣∣2 = ∣∣〈ψF , Y
m=Jmax
Jmax

〉∣∣2
. Then

|ψF 〉 can be reached from |ψI 〉 with controls ε0(t) and ε1(t).

Proof. The conclusion is a consequence of theorem 2 for K = 2 and using all spherical
harmonics

∣∣Ym
J

〉
except

∣∣Ym=Jmax
Jmax

〉
. Thus, we conclude that the Lie algebra has dimension

N2, and by the independent system controllability criterion in [22, 23] we obtain the
conclusion. �

A similar analysis applies when the field is shaped in the −→z and
−→x −i−→y√

2
directions

with the modification that in this case the population of
∣∣Ym=−Jmax

Jmax

〉
is conserved and the

compatibility relation reads
∣∣〈ψI , Y

m=−Jmax
Jmax

〉∣∣2 = ∣∣〈ψF , Y
m=−Jmax
Jmax

〉∣∣2
. (23)

5.2. Field shaped in the
−→x +i−→y√

2
and

−→x −i−→y√
2

directions

Using the same notation, now ε−1(t) and ε1(t) are arbitrary and ε0 is null. Thus, the
states are divided in two components cf figure 3: X1 = {∣∣Y 0

0

〉
,
∣∣Y±1

1

〉
,
∣∣Y±2

2

〉
,
∣∣Y 0

2

〉
, . . .

}
and X2 = {∣∣Y 0

1

〉
,
∣∣Y±1

2

〉
,
∣∣Y±2

3

〉
,
∣∣Y 0

3

〉
, . . .

}
with no coupling between the two components.

The conservation law reads∑
|Ym

J 〉∈X1

∣∣〈ψI , Y
m
J

〉∣∣2 =
∑

|Ym
J 〉∈X1

∣∣〈ψF , Ym
J

〉∣∣2
. (24)
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Theorem 6. Consider the model of the theorem 1 with ε−1 = 0. Let |ψI 〉 and |ψF 〉 be two
states compatible in the sense of equation (24). Then |ψF 〉 can be reached from |ψI 〉 with
controls ε−1(t) and ε1(t).

Proof. The proof follows that of theorem 2 except that the system has now two independent
graphs instead of one, both satisfying the hypothesis of the theorem. The same computation
allows one to generate the full Lie algebra for X1 (using that for the graph containing the states
X1 we have mmax

0 = 1). Next, one works with the second graph and constructs its associated
algebra. The conclusion is obtained by the independent system controllability criterion in
[22, 23]. �

6. Conclusions

This paper discussed the controllability properties of molecular rotation with multi-polarization
fields that act through a permanent dipole moment. A first conclusion is that the degeneracy
of the energy levels brings no additional restriction on the controllability. Positive results
are found for the controllability of an arbitrary number of rotation eigenstates. We also
discussed the situation of a symmetric top molecule when the magnetic quantum number m is
zero.

The dependence of the controllability result on the the coupling operators is not surprising;
however as in [9] the numeric values of the entries of the coupling matrices are not important
as soon as they are non-null. Thus, we can say that the controllability depends only on the
‘selection rules’, i.e. on the fact that two states may, or may not, have a non-vanishing coupling
through one of the external (laser) interactions.

The situation with one and two polarized fields was also examined based on the generic
dimension of the Lie algebra. For the particular situations where the field is shaped in any
combination of two of the three directions −→z ,

−→x +i−→y√
2

and
−→x −i−→y√

2
, we showed that the system

is still controllable provided that the target is consistent with the selection rules. Breaking
those symmetries would require a third independently shaped pulse.

The specific situation with two fields depends on which dual polarization components are

available: if one can shape the polarization in the −→z and
−→x +i−→y√

2
directions everything can be

controlled except the population of the state
∣∣Ym=Jmax

Jmax

〉
(respectively |Ym=−Jmax

Jmax
〉 for the −→z and

−→x −i−→y√
2

directions). If in contrast the field can be shaped in the
−→x +i−→y√

2
and

−→x −i−→y√
2

directions,
then the initial and target state have to be compatible in the sense of the selection rules. We
note that in both cases with two polarization field components (in the list above) one only has
a single compatibility constraint to satisfy. This is to be contrasted with the situation when
only one polarization component is available; in this case, there are many constraints on the
target state (e.g. when only ε0 is available the selection rules impose 2Jmax + 1 constraints
because m is conserved). In summary, the most substantial increase in controllability
(based on our analysis of these particular cases and on the general controllability result)
is witnessed when replacing a linear polarized field by a field independently shaped in two
directions.

Finally, it is important to place this work in the larger context of molecular, and more
generally quantum system, controllability. A pertinent issue is whether any randomly chosen
Hamiltonian (i.e. a particular physical system drawn from the stockroom) is likely to be
controllable. Building on theoretical results [21], recent numerical work [24] argued that
virtually any Hamiltonian-coupling operator (i.e. the dipole) expressed in the eigenbasis of
the field free Hamiltonian H0 will generate a connected graph (e.g. as in figure 1 versus that

9
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in figure 2). Although this statement is short of establishing controllability, it is a necessary
criteria. Furthermore, to arrange a special relationship amongst the Hamiltonian’s matrix
elements in order to violate controllability is a demand whose solution lies in the null space
of all Hamiltonians [8, 11]. In particular, we proved in this paper that this null space does
not contain the degenerate Hamiltonian for rotational motion. Thus, although uncontrollable
Hamiltonians can be designed, the chance of finding one in the laboratory is very small. This
conclusion provides the basis to expect that suitable control fields will virtually always exist
yielding high-quality results.
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